

# MINIRAE 2000 & MULTIRAE PRE-PROGRAMMED COMPOUND LIBRARIES

This technical note lists the preprogrammed library gas selections available on the MiniRAE 2000, ppbRAE, MultiRAE and AreaRAE. Included are the formal chemical names, the instrument abbreviations, and the default span values and alarm limits. If no abbreviation is listed, the formal name is used in the instrument. TWA and STEL values were taken from the 1997 ACGIH list of TLVs when given; otherwise the values were estimated. None of these values should be construed as regulatory limits.

| MiniRAE 2000 & ppbRAE       | 2000 & ppbRAE Instrument of an a visit of the visit of the |           | 0F 44 7 - V | Pre-set PID Span & Alarm Settings |      |      |     |     |      |
|-----------------------------|------------------------------------------------------------|-----------|-------------|-----------------------------------|------|------|-----|-----|------|
| Compound                    | Abbreviation                                               | CF 9.8 eV | CF 10.6 eV  | CF 11.7 eV                        | Span | High | Low | TWA | STEL |
| Custom                      |                                                            | 1.00      | 1.00        | 1.00                              | 100  | 100  | 50  | 10  | 25   |
| Acetaldehyde                |                                                            | -         | 6           | 3.3                               | 25   | 25   | 10  | 10  | 25   |
| Acetic acid                 |                                                            | -         | 14          | 2.5                               | 20   | 15   | 10  | 10  | 15   |
| Acetone                     |                                                            | 1.2       | 1.1         | 1.4                               | 100  | 500  | 250 | 500 | 750  |
| Acrylonitrile               |                                                            | -         | -           | 1.2                               | 10   | 5    | 2   | 2   | 5    |
| Acrolein                    |                                                            | 42        | 3.9         | 1.4                               | 10   | 5    | 2   | 0.1 | 0.3  |
| Allyl alcohol               |                                                            | -         | 2.4         | 1.7                               | 10   | 4    | 2   | 2   | 4    |
| Ammonia                     |                                                            | -         | 9.7         | 5.7                               | 50   | 50   | 25  | 25  | 35   |
| Aniline                     |                                                            | 0.50      | 0.48        | 0.47                              | 5    | 5    | 2   | 2   | 5    |
| Benzene                     |                                                            | 0.55      | 0.53        | 0.60                              | 5    | 5    | 2   | 0.5 | 2.5  |
| Bromoform                   |                                                            | -         | 2.5         | 0.50                              | 10   | 5    | 2   | 0.5 | 1    |
| Butadiene                   |                                                            | -         | 0.85        | 1.1                               | 10   | 10   | 5   | 2   | 5    |
| <i>n</i> -Butane            | Butane n-                                                  | -         | -           | 1.2                               | 100  | 2000 | 800 | 800 | 2000 |
| <i>n</i> -Butanol           | Butanol n-                                                 | 70        | 4.7         | 1.4                               | 50   | 50   | 30  | 30  | 50   |
| n-Butyl acetate             | Butyl acetate n                                            | -         | 2.6         | -                                 | 100  | 500  | 200 | 200 | 500  |
| Butyl cellosolve            |                                                            | 1.8       | 1.2         | 0.62                              | 50   | 50   | 25  | 25  | 50   |
| Carbon disulfide            |                                                            | 4.0       | 1.2         | 0.44                              | 10   | 50   | 20  | 10  | 25   |
| Carbon tetrachloride        | Carbon tetraCl                                             | -         | -           | 1.7                               | 10   | 20   | 10  | 5   | 10   |
| Chlorine                    |                                                            | -         | -           | 1.0                               | 10   | 5    | 2   | 0.5 | 1    |
| Chlorobenzene               |                                                            | 0.44      | 0.40        | 0.39                              | 20   | 20   | 10  | 10  | 20   |
| Chloroform                  |                                                            | -         | -           | 3.5                               | 50   | 20   | 10  | 10  | 20   |
| Crotonaldehyde              |                                                            | 1.5       | 1.1         | 1.0                               | 10   | 5    | 2   | 2   | 5    |
| Cumene                      |                                                            | 0.58      | 0.54        | 0.40                              | 100  | 100  | 50  | 50  | 100  |
| Cyclohexane                 |                                                            | 3.3       | 1.4         | 0.64                              | 100  | 500  | 300 | 300 | 500  |
| Cyclohexanone               |                                                            | 1.0       | 0.9         | 0.7                               | 25   | 50   | 25  | 25  | 50   |
| Decane                      |                                                            | 4.0       | 1.4         | 0.35                              | 100  | 500  | 300 | 300 | 500  |
| 1,2-Dibromomethane          | DiBrEthane 1 2-                                            | -         | 1.7         | 0.64                              | 25   | 25   | 10  | 10  | 25   |
| 1,2-Dichloroethane          | DiClEthane 1 2-                                            | -         | -           | 0.60                              | 25   | 25   | 10  | 10  | 25   |
| trans-1,2- Dichloroethylene | DiClEthene t1 2-                                           | -         | 0.50        | 0.30                              | 10   | 400  | 200 | 200 | 400  |
| o-Dichlorobenzene           | DiClBenzene o-                                             | 0.54      | 0.47        | 0.38                              | 25   | 50   | 25  | 25  | 50   |
| Dichloromethane             |                                                            | -         | -           | 0.89                              | 25   | 50   | 25  | 25  | 50   |

#### Table 1. MiniRAE 2000 and ppbRAE PID compound libraries.

| MiniRAE 2000 & ppbRAE             | Instrument       |           | and ppbkAE 1 | 1          | Pre-set PID Span & Alarm Settings |      |      |      |      |  |
|-----------------------------------|------------------|-----------|--------------|------------|-----------------------------------|------|------|------|------|--|
| Compound                          | Abbreviation     | CF 9.8 eV | CF 10.6 eV   | CF 11.7 eV | Span                              | High | Low  | TWA  | STEL |  |
| Diesel fuel                       |                  | -         | 0.7          | 0.4        | 50                                | 30   | 11   | 11   | 30   |  |
| Diethylamine                      |                  | -         | 0.97         | -          | 15                                | 15   | 10   | 5    | 15   |  |
| Diisopropylamine                  |                  | 0.84      | 0.74         | 0.53       | 15                                | 15   | 10   | 5    | 15   |  |
| N,N-Dimethylacetamide             | DiMeAcetamideNN- | 0.87      | 0.80         | 0.80       | 100                               | 50   | 25   | 10   | 25   |  |
| Epichlorohydrin                   |                  | -         | 8.5          | 1.4        | 10                                | 50   | 2    | 0.5  | 1    |  |
| Ethanol                           |                  | -         | 12           | 8          | 100                               | 2000 | 1000 | 1000 | 2000 |  |
| Ethylene                          | Ethene           | -         | 10           | 3          | 100                               | 2000 | 1000 | 1000 | 2000 |  |
| Ethyl acetate                     |                  | -         | 4.6          | -          | 100                               | 1000 | 400  | 400  | 1000 |  |
| Ethylbenzene                      |                  | 0.52      | 0.52         | 0.51       | 100                               | 125  | 100  | 100  | 125  |  |
| Ethyl ether                       |                  | -         | 1.1          | -          | 100                               | 500  | 400  | 400  | 500  |  |
| Ethyl (S)-(-)-lactate             | EthyIS(-)lactate | 13        | 3.2          | 1.6        | 100                               | 125  | 100  | 100  | 125  |  |
| Ethyl sulfide                     |                  | -         | 0.51         | -          | 100                               | 100  | 50   | 10   | 25   |  |
| Furfural                          |                  | -         | 0.92         | 0.80       | 10                                | 5    | 2    | 2    | 5    |  |
| Gasoline vapors                   |                  | -         | 0.85         | -          | 100                               | 500  | 300  | 300  | 500  |  |
| Gasoline whole                    |                  | 1.3       | 1.0          | 0.47       | 100                               | 500  | 300  | 300  | 500  |  |
| <i>n</i> -Heptane                 | Heptane n-       | 45        | 2.8          | 0.60       | 100                               | 500  | 400  | 400  | 500  |  |
| 1,1,1,3,3,3-Hexamethyldisilazane  | HexaMe-disilazan | -         | 0.24         | 0.19       | 10                                | 10   | 5    | 5    | 10   |  |
| <i>n</i> -Hexane                  | Hexane n-        | -         | 4.3          | 0.50       | 100                               | 75   | 50   | 50   | 75   |  |
| Hydrogen Sulfide                  |                  | -         | 3.3          | 1.5        | 50                                | 15   | 10   | 10   | 15   |  |
| Isobutane                         |                  | -         | -            | 1.2        | 100                               | 2000 | 800  | 800  | 2000 |  |
| Isobutanol                        |                  | 19        | 3.8          | 1.5        | 100                               | 100  | 50   | 50   | 100  |  |
| Isobutyl acrylate                 | Isobutyl acrylat | -         | 1.5          | 0.6        | 100                               | 250  | 100  | 100  | 250  |  |
| Isobutylene                       |                  | 1.0       | 1.0          | 1.0        | 100                               | 100  | 50   | 10   | 25   |  |
| Isoprene                          |                  | 0.69      | 0.63         | 0.60       | 100                               | 250  | 100  | 100  | 250  |  |
| Isopropanol                       |                  | -         | 6.0          | 2.7        | 100                               | 500  | 400  | 400  | 500  |  |
| Jet fuel JP-4                     |                  | -         | 0.99         | 0.42       | 50                                | 50   | 30   | 30   | 50   |  |
| Jet fuel JP-5                     |                  | -         | 0.60         | 0.46       | 50                                | 30   | 15   | 15   | 30   |  |
| Jet fuel JP-8                     |                  | -         | 0.60         | 0.32       | 50                                | 30   | 15   | 15   | 30   |  |
| Mesitylene                        |                  | 0.36      | 0.35         | 0.32       | 100                               | 250  | 100  | 100  | 250  |  |
| Methanol                          |                  | -         | -            | 2.5        | 100                               | 250  | 100  | 100  | 250  |  |
| Methyl bromide                    | Me bromide       | -         | 1.7          | 1.3        | 5                                 | 5    | 2    | 1    | 3    |  |
| Methyl chloride                   | Me chloride      | -         | -            | 0.74       | 100                               | 100  | 50   | 50   | 100  |  |
| Methyl cyclohexane                | Me cyclohexane   | 1.6       | 0.97         | 0.53       | 100                               | 500  | 400  | 400  | 500  |  |
| Methylene chloride — Listed as Di | chloromethane    | -         | -            | 0.89       | 25                                | 50   | 25   | 25   | 50   |  |
| Methyl ethyl ketone               | Me ethyl ketone  | 0.86      | 0.86         | 1.1        | 100                               | 300  | 200  | 200  | 300  |  |
| Methyl isobutyl ketone            | Me iBut ketone   | 0.9       | 0.80         | 0.6        | 100                               | 75   | 50   | 50   | 75   |  |
| Methyl iodide                     | Me iodide        | 0.21      | 0.22         | 0.26       | 10                                | 10   | 5    | 2    | 5    |  |
| Methyl methacrylate               | Me methacrylate  | 2.7       | 1.5          | 1.2        | 100                               | 250  | 100  | 100  | 250  |  |
| Methyl propyl ketone              | Me propyl ketone | -         | 0.93         | 0.79       | 100                               | 250  | 200  | 200  | 250  |  |
| Methyl sulfide                    | Me sulfide       | 0.49      | 0.44         | 0.46       | 100                               | 100  | 50   | 10   | 25   |  |
| Methyl t-butyl ether              | Me t-butyl ether | -         | 0.91         | -          | 100                               | 100  | 400  | 400  | 100  |  |

| MiniRAE 2000 & ppbRAE                 | Instrument       |           |            | -          | Pre-set PID Span & Alarm Settings |      |      |      |      |
|---------------------------------------|------------------|-----------|------------|------------|-----------------------------------|------|------|------|------|
| Compound                              | Abbreviation     | CF 9.8 eV | CF 10.6 eV | CF 11.7 eV | Span                              | High | Low  | TWA  | STEL |
| Mineral spirits                       |                  | 1.0       | 0.7        | 0.39       | 100                               | 250  | 100  | 100  | 250  |
| Napthalene                            |                  | 0.45      | 0.42       | 0.40       | 100                               | 150  | 100  | 100  | 150  |
| Nitric oxide                          |                  | -         | 5.2        | 2.8        | 50                                | 50   | 25   | 25   | 50   |
| Nitrobenzene                          |                  | 2.6       | 1.9        | 1.6        | 10                                | 10   | 5    | 1    | 5    |
| N-Methyl pyrrolidinone                | NMP              | 1.0       | 0.79       | 0.93       | 100                               | 100  | 50   | 10   | 25   |
| N-Vinyl pyridine                      | NVP              | 1.0       | 0.80       | 0.92       | 100                               | 100  | 50   | 10   | 25   |
| n-Octane                              | Octane n-        | 13.3      | 1.8        | -          | 100                               | 375  | 300  | 300  | 375  |
| n-Pentane                             | Pentane n-       | 80        | 8.4        | 0.70       | 100                               | 750  | 600  | 600  | 750  |
| Perchloroethene                       |                  | 0.69      | 0.57       | 0.31       | 50                                | 100  | 25   | 25   | 100  |
| Propylene glycol methyl ether         | PGME             | 2.4       | 1.5        | 1.1        | 100                               | 150  | 100  | 100  | 150  |
| Propylene glycol methyl ether acetate | PGMEA            | 1.65      | 1.0        | 0.82       | 100                               | 100  | 50   | 50   | 100  |
| Phenol                                |                  | 1.0       | 1.0        | 0.9        | 10                                | 10   | 5    | 5    | 10   |
| a-Pinene                              | Pinene a-        | -         | 0.31       | 0.47       | 100                               | 250  | 100  | 100  | 250  |
| b-Pinene                              | Pinene b-        | 0.37      | 0.37       | 0.38       | 100                               | 250  | 100  | 100  | 250  |
| Propane                               |                  | -         | -          | 1.8        | 100                               | 5000 | 2500 | 2500 | 5000 |
| Propene                               |                  | -         | 1.4        | 1.6        | 100                               | 5000 | 2500 | 2500 | 5000 |
| n-Propyl bromide                      | Propyl bromide n | -         | 1.5        | 0.6        | 100                               | 100  | 50   | 50   | 100  |
| Propyleneimine                        |                  | 1.5       | 1.4        | 1.0        | 10                                | 10   | 5    | 2    | 5    |
| Pyridine                              |                  | 0.78      | 0.68       | 0.70       | 10                                | 10   | 5    | 5    | 10   |
| Styrene                               |                  | 0.45      | 0.40       | 0.4        | 50                                | 40   | 20   | 20   | 40   |
| Tetrahydrofuran                       |                  | 1.9       | 1.7        | 1.0        | 100                               | 250  | 200  | 200  | 250  |
| 1,1,2,2-Tetrachloroethane             | TetrClEthan 1122 | -         | -          | 0.6        | 5                                 | 5    | 2    | 1    | 2    |
| Tetrachloroethylene — Listed as Per   | chloroethene     | 0.69      | 0.57       | 0.31       | 50                                | 100  | 25   | 25   | 100  |
| Therminol                             |                  | 0.90      | 0.68       | -          | 5                                 | 5    | 2    | 1    | 2    |
| Toluene                               |                  | 0.54      | 0.50       | 0.51       | 100                               | 100  | 50   | 50   | 100  |
| 1,1,1-Trichloroethane                 | TriClEthane 111  | -         | -          | 0.98       | 100                               | 450  | 350  | 350  | 450  |
| Trichloroethylene                     | Trichloroethene  | 0.62      | 0.54       | 0.43       | 100                               | 100  | 50   | 50   | 100  |
| Vinyl chloride                        |                  | -         | 2.0        | 0.64       | 10                                | 10   | 5    | 5    | 10   |
| VOC                                   |                  | 1.00      | 1.00       | 1.00       | 100                               | 100  | 50   | 10   | 25   |
| <i>m</i> -Xylene                      | Xylene m-        | 0.50      | 0.43       | 0.40       | 100                               | 150  | 100  | 100  | 150  |
| o-Xylene                              | Xylene o-        | 0.57      | 0.59       | 0.69       | 100                               | 150  | 100  | 100  | 150  |
| <i>p</i> -Xylene                      | Xylene p-        | -         | 0.45       | 0.62       | 100                               | 150  | 100  | 100  | 150  |

#### Table 1. MiniRAE 2000 and ppbRAE PID compound libraries.

# Table 2. MultiRAE and AreaRAE PID and LEL compound libraries.

| MultiDAE 9 AreaDAE Compound | Instrument Ab | Instrument Abbreviation |            |            | CF LEL |
|-----------------------------|---------------|-------------------------|------------|------------|--------|
| MultiRAE & AreaRAE Compound | English       | German                  | CF 10.6 eV | CF 11.7 eV | UF LEL |
| Custom gas                  |               | Anwender Komp.          | 1.00       | 1.00       | 1.00   |
| Acetaldehyde                |               | Acetaldehyd             | 6          | 3.3        | 1.8    |
| Acetic acid                 |               | Essigsaeure             | 22         | 2.6        | 3.4    |
| Acetone                     |               | Aceton                  | 1.1        | 1.4        | 2.2    |

| Table 2. MultiRAE and AreaRAE PID and LEL compound libraries.   Instrument Abbreviation |                  |                     |            |            |        |  |
|-----------------------------------------------------------------------------------------|------------------|---------------------|------------|------------|--------|--|
| MultiRAE & AreaRAE Compound                                                             | English German   |                     | CF 10.6 eV | CF 11.7 eV | CF LEL |  |
| Acrylonitrile                                                                           |                  | AcryInitril         | -          | 1.2        | -      |  |
| Allyl alcohol                                                                           |                  | Allylalkohol        | 2.4        | 1.7        | -      |  |
| Ammonia                                                                                 |                  | ,<br>Ammoniak       | 9.7        | 5.7        | 0.8    |  |
| Benzene                                                                                 |                  | Benzol              | 0.53       | 0.60       | 2.2    |  |
| Butadiene                                                                               |                  | Butadien            | 0.85       | 1.1        | 2.5    |  |
| <i>n</i> -Butane                                                                        | Butane n-        | Butan, n-           | -          | 1.2        | 2.0    |  |
| n-Butyl acetate                                                                         | Butyl acetate n  | Butylacetat n-      | 2.6        | -          | -      |  |
| Carbon disulfide                                                                        | ,                | Kohlendisulfid      | 1.2        | 0.44       | -      |  |
| Carbon monoxide                                                                         |                  | Kohlenmonoxid       | -          | -          | 1.2    |  |
| Carbon tetrachloride                                                                    | Carbon tetraCl   | Tetraclormethan     | -          | 1.7        | -      |  |
| Chlorine                                                                                |                  | Chlor               | -          | 1.0        | -      |  |
| Cyclohexane                                                                             |                  | Cyclohexan          | 1.4        | -          | 2.5    |  |
| Cyclohexanone                                                                           |                  | Cyclohexanon        | 0.9        | 0.7        | -      |  |
| 1,2-Dichloroethane                                                                      | DiCl-ethane 1,2- | DiCl-ethan 1,2-     | -          | 0.60       | -      |  |
| Dichloromethane                                                                         |                  | Dichloromethan      | _          | 0.89       | 1.0    |  |
| Diesel fuel                                                                             |                  | Diesel              | 0.7        | 0.4        | -      |  |
| Diethylamine                                                                            |                  | Diethylamin         | 0.97       | -          | -      |  |
| Epichlorohydrin                                                                         |                  | Epichlorhydrin      | 8.5        | 1.4        | -      |  |
| Ethanol                                                                                 |                  | Ethanol             | 12         | 8          | 1.7    |  |
| Ethylene                                                                                | Ethene           | Ethen               | 10         | 3          | 1.4    |  |
| Ethyl acetate                                                                           |                  | Ethyl acetat        | 4.6        | -          | 2.2    |  |
| Ethylbenzene                                                                            |                  | Ethylbenzen         | 0.52       | 0.51       | 2.8    |  |
| Ethyl ether                                                                             |                  | Ethylether          | 1.1        | -          | 2.3    |  |
| Ethyl sulfide                                                                           |                  | Ethylsulfide        | 0.51       | _          |        |  |
| Gasoline vapors                                                                         |                  | Benzin-dampf        | 0.85       | _          | -      |  |
| Gasoline whole                                                                          |                  | Benzin, ges         | 1.0        | 0.47       | 2.1    |  |
| <i>n</i> -Heptane                                                                       | Heptane n-       | Heptan n-           | 2.8        | 0.60       | 2.4    |  |
| 1,1,1,3,3,3- Hexamethyldisilazane                                                       | HexaMedisilazan  | HexaMedisilazan     | 0.24       | 0.19       | -      |  |
| <i>n</i> -Hexane                                                                        | Hexane, n-       | Hexan, n-           | 4.3        | 0.50       | 2.3    |  |
| Hydrogen                                                                                |                  | Wasserstoff         | -          | -          | 1.1    |  |
| Hydrogen Sulfide                                                                        |                  | Schwefelwasserstoff | 3.3        | 1.5        | -      |  |
| Isobutane                                                                               |                  | Isobutan            | -          | 1.2        | 1.8    |  |
| Isobutylene                                                                             |                  | Isobuten            | 1.0        | 1.0        | 1.5    |  |
| Isopropanol                                                                             |                  | Isopropanol         | 6.0        | 2.7        | 2.6    |  |
| Jet fuel JP-4                                                                           |                  | Kerosin JP-4        | 0.99       | 0.42       | -      |  |
| Jet fuel JP-5                                                                           |                  | Kerosin JP-5        | 0.60       | 0.46       | -      |  |
| Jet fuel JP-8                                                                           |                  | Kerosin JP-8        | 0.60       | 0.32       | -      |  |
| Methane                                                                                 |                  | Methan              | -          | -          | 1.0    |  |
| Methanol                                                                                |                  | Methanol            | _          | 2.5        | 1.5    |  |
| Methylene chloride — listed as Dichloromethane                                          | <br>}            |                     | -          | 0.89       | 1.0    |  |
| Methyl ethyl ketone                                                                     | MeEtketone       | MeEtketon MEK       | 0.86       | 1.1        | 2.6    |  |

# Table 2. MultiRAE and AreaRAE PID and LEL compound libraries.

|                             | Instrumen        | nt Abbreviation | OF 40 C -V | CF 11.7 eV |        |
|-----------------------------|------------------|-----------------|------------|------------|--------|
| MultiRAE & AreaRAE Compound | English          | German          | CF 10.6 eV | GF 11.7 ev | CF LEL |
| Methyl isobutyl ketone      | Me iBut ketone   | Me-iBut-keton   | 0.8        | 0.6        | -      |
| Methyl methacrylate         | Me methacrylate  | Me methacrylat  | 1.5        | 1.2        | -      |
| Methyl t-butyl ether        | Me-butyl-ether   | Me t-butylether | 0.91       | -          | -      |
| Nitric oxide                |                  | Stickst.monoxid | 5.2        | 2.8        | -      |
| n-Octane                    | Octane, n-       | Oktan, n-       | 1.8        | -          | 2.9    |
| n-Pentane                   | Pentane, n-      | Pentan, n-      | 8.4        | 0.70       | 2.2    |
| Perchloroethene             |                  | Perchloroethene | 0.57       | 0.31       | -      |
| a-Pinene                    | Pinene a-        | Pinen, a-       | 0.31       | 0.47       | -      |
| b-Pinene                    | Pinene b-        | Pinen, b-       | 0.37       | 0.37       | -      |
| Propane                     |                  | Propan          | -          | 1.8        | 1.6    |
| Propene                     |                  | Propen          | 1.4        | 1.6        | 1.5    |
| Styrene                     |                  | Styrol          | 0.40       | 0.4        | -      |
| Tetrahydrofuran             |                  | Tetrahydrofuran | 1.7        | 1.0        | -      |
| Toluene                     |                  | Tolulol         | 0.50       | 0.51       | 2.6    |
| 1,1,1-Trichloroethane       | TriCl-ethane 111 | TiCl-Ethan 111  | -          | 0.98       | -      |
| Trichloroethylene           | Trichloroethene  | Trichloroethen  | 0.54       | 0.43       | -      |
| Vinyl chloride              |                  | Vinyl chlorid   | 2.0        | 0.64       | 1.8    |
| <i>m</i> -Xylene            | Xylene, m-       | Xylol, m-       | 0.43       | 0.40       | 2.7    |
| o-Xylene                    | Xylene, o-       | Xylol, o-       | 0.59       | 0.69       | 3.0    |
| <i>p</i> -Xylene            | Xylene, p-       | Xylol, p-       | 0.45       | 0.62       | 2.8    |

# Table 2. MultiRAE and AreaRAE PID and LEL compound libraries.

#### Table 3. Default span and alarm settings for meters with combustible gas(LEL) and electrochemical (EC) sensors

|                                   | Farmela                       | Pre-set Sensor Span & Alarm Settings |      |      |      |      |  |
|-----------------------------------|-------------------------------|--------------------------------------|------|------|------|------|--|
| MultiRAE, AreaRAE & VRAE Compound | Formula                       | Span                                 | High | Low  | TWA  | STEL |  |
| Carbon Monoxide                   | CO                            | 50                                   | 200  | 35   | 35   | 100  |  |
| Hydrogen Sulfide                  | H <sub>2</sub> S              | 10                                   | 20   | 10   | 10   | 15   |  |
| Ammonia                           | NH <sub>3</sub>               | 50                                   | 50   | 25   | 25   | 35   |  |
| Phosphine                         | PH <sub>3</sub>               | 5                                    | 2    | 1    | 3    | 1    |  |
| Hydrogen Cyanide                  | HCN                           | 10                                   | 50   | 4.7  | 4.7  | 4.7  |  |
| Hydrogen Chloride                 | HCI                           | 10                                   | 5    | 2    | 1    | 5    |  |
| Chlorine                          | CL <sub>2</sub>               | 10                                   | 5    | 0.5  | 0.5  | 1    |  |
| Chlorine Dioxide                  | CIO <sub>2</sub>              | 0.5                                  | 0.5  | 0.2  | 0.1  | 0.3  |  |
| Sulfur Dioxide                    | SO <sub>2</sub>               | 5                                    | 10   | 2    | 2    | 5    |  |
| Nitrogen Oxide                    | NO                            | 25                                   | 50   | 25   | 25   | 25   |  |
| Nitrogen Dioxide                  | NO <sub>2</sub>               | 5                                    | 10   | 1    | 1    | 1    |  |
| Carbon Dioxide                    | CO <sub>2</sub>               | 5000                                 | 8000 | 5000 | 5000 | 5000 |  |
| LEL (% LEL)                       | CH <sub>4</sub>               | 50                                   | 20   | 10   | NA*  | NA   |  |
| VOL (% Vol)                       | CH <sub>4</sub>               | 20                                   | 20   | 10   | NA   | NA   |  |
| Oxygen (% Vol)                    | 02                            | 20.9                                 | 23.5 | 19.5 | NA   | NA   |  |
| VOC (Isobutylene)                 | C <sub>4</sub> H <sub>8</sub> | 100                                  | 100  | 50   | 10   | 25   |  |

\* NA = Not applicable

# COMPOUND SELECTION IN THE MULTIRAE AND AREARAE SERIES INSTRUMENTS

The MutliRAE and AreaRAE Series monitors allow independent selection of the calibration gas and measurement gas, for both PID and LEL sensors. First, enter the program mode Calibration Menu and select the calibration gas from the compound library. Do not adjust the Correction Factor. Next, move to the Sensor Configuration Menu and select the measurement gas. The monitor automatically displays an adjusted Correction Factor equal to the CF for the calibration gas, divide by the CF for the measurement gas for a MultiRAE with a 10.6 eV lamp, and the measurement gas were set to octane, the new CF would be 1.8/4.3 = 0.42. The instrument automatically displays the new Correction Factor and applies it to the measurements to read the true concentration of octane. Do not reset the CF to 1.8 for octane in the Sensor Configuration menu, or the concentrations will be incorrect.

## **SPAN VALUES AND ALARM LIMITS**

In the MultiRAE and AreaRAE Series monitors, the span values and alarm limits are not changed when a new gas is called up from the library. The user should adjust them to the desired values. In the MiniRAE 2000 and ppbRAE, the alarm limits and span values are automatically set to those in the first table for the particular compound selected. It is a good idea to review these values after a new compound has been called up, in order to verify that they are set at the desired values.

# **CALIBRATION MEMORIES OF THE MINIRAE 2000**

The MiniRAE 2000 and ppbRAE monitors provide 8 calibration memories. These calibration memories allow the user to store calibration and alarm data for up to 8 different gases. During regular operation, the user can easily switch between these calibration memories and obtain direct readings for the corresponding gases. Below is a more detailed description of the calibration memories and how they are used.

To calibrate and measure with a specific gas of interest, change the memory to that gas and calibrate that memory with the desired gas. This is the most accurate method of calibration.

To calibrate with isobutylene and measure a different gas, applying a library correction factor, use either of the following two methods:

- Calibrate Memory #0 with isobutylene and set the measurement gas of Memory #0 to the desired gas
- **2.** Calibrate Memory #0 with isobutylene and then change the Memory # to the desired gas, but do not calibrate that memory.

# **Calibration Memory Curves**

There are total 8 calibration memories inside the non-volatile memory of the MiniRAE 2000 and ppbRAE. Each calibration memory contains following information:

Gas parameters:

- a. Gas name
- b. 3 response factors for 9.8, 10.6 and 11.7 eV lamp
- c. Span value
- d. High alarm limit
- e. Low alarm limit
- f. STEL alarm limit
- g. TWA alarm limit

Calibration data:

- h. Calibration flag (0=not calibrated, 1=calibrated)
- i. Lamp type: 10.6 eV, 11.7 eV or 9.8 eV
- j. Calibration data
- k. Calibration Date
- I. Others

These calibration memories are numbered from 0 to 7. The user can pick any one of the 8 gas memories as the **"current"** gas and the MiniRAE 2000 monitor will use the selected gas for measurement and alarm limits.

When the unit is shipped from the factory, the calibration memories are pre-loaded with following 8 gases:

| Cal Memory #1 | Gas Name       |  |  |
|---------------|----------------|--|--|
| 0             | Isobutylene    |  |  |
| 1             | Hexane         |  |  |
| 2             | Xylene         |  |  |
| 3             | Benzene        |  |  |
| 4             | Styrene        |  |  |
| 5             | Toluene        |  |  |
| 6             | Vinyl Chloride |  |  |
| 7             | Custom         |  |  |

These gas names are simply place holders and can be changed to any compound in the library (See Modify Cal Mem below).

# **Select a Calibration Memory:**

To select a calibration memory, enter programming mode (press [N]and [MODE] keys together for 3 seconds), press [Y] to the question "Calibrate / Select Gas?". Press the [N] key until the display shows "Select Cal Memory?". Press [Y] and the display will show the current gas name and calibration memory number, e.g. "Gas=Isobutylene, Mem #0?". To change to a different calibration memory, press [N] and the gas name and calibration memory number will be displayed (if the gas you need is not shown under the 8 calibration Memory"). Press[N] until the desired calibration memory number is displayed. Then press [Y]. The unit will ask to confirm the selection. When [Y] is pressed, the display will either show "CF=xx.x" or "Last calibrated xx/xx/xx".

If the display shows "CF=xx.x", it means that this calibration memory has not been calibrated before with an actual gas. Therefore, a library **correction factor** of the selected gas will be automatically downloaded and applied to calculate the gas reading based on the calibration data obtained from memory #0. This is the appropriate sequence when calibration is done with isobutylene in Memory #0 and the user wants to shift to read a different gas without re-calibrating.

If the display shows "Last calibrated xx/xx/xx", then the selected calibration memory has been calibrated with an actual gas on the date of xx/xx/xx. In this case, the gas reading will be calculated based on the **actual calibration data** stored in this calibration memory . The measurement and calibration gas should be the same. For exam ple, if you are using calibration Memory #2 and it is set to xylene, then if you calibrate Memory #2 you must use xylene gas. If you want to use Memory #2 while it is set to xylene but you want to calibrate on isobutylene, then prior to calibrating you must select Memory #0 (Isobutylene), perform the calibration and then reselect calibration Memory #2 after calibration.

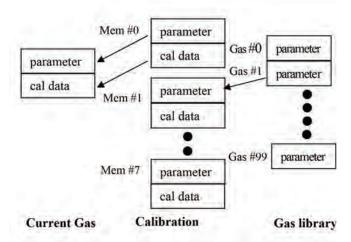
## **Calibrate a Calibration Memory:**

To calibrate a calibration memory, select the calibration memory first, as described in section 3 above. Then perform a Span Calibration using the specific gas for that memory. After the span calibration, the selected calibration memory will store the actual calibration data. The calibration flag in the cal memory will be turned on. The real time gas reading will be calculated based on the actual calibration data stored in this calibration memory from then on.

## Modify a Calibration Memory:

To modify a calibration memory, select the calibration memory first, as described in section 3 above. Then modify the gas parameters, such as span value, alarm limits and correction factors following the programming menus. All the modifications will be stored in the calibration memory until they are changed again later.

You can also **change to a different gas** for each calibration memory. To do so, select the calibration memory first, as described in section 3 above. Press [Y] when "Modify cal memory?" is displayed. The display will show the current memory number and the current gas name for this memory with a question mark at the end. To change to a different gas, press [N] and the display will ask the user to copy a new gas from the built-in library. Press [Y] to copy one gas name from the 100 built-in gases to replace the current gas for this memory. Otherwise, press [N] to enter a custom gas name (up to 8 characters ) for this memory.


## **BUILT-IN GAS LIBRARY:**

There are a total of 100 gases stored in the gas library of the MiniRAE 2000. Each gas memory contains the following information:

Gas parameters

- a. Gas Name
- b. Response factor for 9.8, 10.6 and 11.7 eV lamp
- c. Span value
- d. High limit
- e. Low limit
- f. STEL limit
- g. TWA limit
- h. Others

Any one of the gases in this library can be copied to one of the 8 calibration memories as described in the previous section. When a new gas is copied from the gas library into a calibration memory, the gas parameters in the calibration memory are updated. The calibration flag is reset to off to flag that this memory has not been calibrated with an actual gas.



# Special Handling of Calibration Memory #0:

Calibration memory #0 is different from other 7 calibration memories because 1) the type of calibration gas cannot be changed from isobutylene and 2) the measurement gas can be different from isobutylene. If a different measurement gas is selected, the gas reading will be calculated based on the correction factor of the selected gas and the calibration data of isobutylene gas in this memory.

For calibration memories #1 to #7, the calibration and measurement gases **must be the same**. If the selected gas is used to calibrate, then the calibration flag will be turned on and the gas readings will be based on the actual calibration data for this memory. Otherwise, the calibration flag will remain off and the gas readings will be calculated using the correction factor of the selected gas and the calibration data for isobutylene from memory#0.

# **SUMMARY**:

- Calibration memories #1 to #7 are intended to be used to calibrate and read with the same gas to be measured. This is the preferred method of calibration as it gives the best accuracy.
- Calibration memory #0 is intended to be used to calibrate with isobutylene and measure either total VOC as isobutylene equivalents or measure any other compound using an applied correction factor. The use of correction factors gives lower accuracy, but is simpler and more convenient when no standard is readily available for the compound of interest (see topic #7 "Special Handling of Calibration Memory#0").

**Note:** the current revision of firmware V1.07 includes all the features described in this document. Older version of firmware does not include the special handling of calibration memory #0 described in section 7. In addition, when you select a new calibration memory which has not been calibrated before, the message was "Not Cal'ed", instead of the "CF=xx.x".